窦杰,籍贯江苏徐州,东京大学博士,日本学术振兴会(JSPS)斟酌员、博士生导师、博士后相助导师、老师,入选国度高头绪东谈主才、湖北省高头绪东谈主才筹画、武汉市英才筹画 、中国地质大学(武汉)百东谈主筹画、地大学者学科骨干东谈主才、革命群体中枢骨干。获日本第17届地震工程大会- Early Career Award、第 18 届留日中国东谈主 优秀斟酌.革命恶果奖赏奖、汇集入选中国爱想维尔高被引学者与群众前2%顶尖科学家榜单。担任新西兰皇家学会、湖北省科技厅、广东省科技厅、江西省科技厅、教悔部学位与斟酌生教悔发展中心通信评议大师。
先后任东京大学空间谍报中心博士后,日本国度国立斟酌斥地法东谈主土木斟酌所斟酌员,日本学术振兴会斟酌员。从事地质灾害东谈主工智能大数据及聪慧风险管控、数值模拟和遥感与GIS在降雨-地震-东谈主工诱发的地质灾害行使。行为式样负责东谈主(PI)主抓并相似了10余项科研式样,主若是受日本国土交通(MLIT)部和日本文部省的资助,还负责土木斟酌所火山小组雷达的斟酌责任(由日本宇航天局签署的雷达影像在防灾中的行使)。迄今已发国际刊物、书章和会议120余篇,其中SCI 55余篇,第一作家及通信30余篇,发表在 Earth-Science Reviews, Water Research, Landslides, Journal of Hydrology, Science of The Total Environment, Remote sensing of Environment,Environmental Modelling & Software, Nature Scientific Reports, Remote Sensing & Natural hazards 等多 个国际学术刊物上,两篇文章别离入选2019年百篇顶级当然科学讲演和SCI-TAO杂志最多援用奖,13篇ESI 1%高被引,2篇ESI 0.1%热门论文,Google scholar援用6000次,担任国际SCI期刊Frontiers in Earth Science副主编,担任Geocarto International , Geomatics, Natural Hazards and Risk, Journal Mountain of Science, The Global Environmental Engineers等多个国际期刊编委,担任Remote Sensing主题裁剪和Frontiers in Earth Science前沿裁剪,受邀为Engineering Geology, Landslides, Earth-Science Reviews 等40多 个国际SCI期刊审稿,授权发明专利和软著15 项,在日土产货球行星科学会议、地球科学论坛上等大型会议被行为邀请嘉宾作讲演。担任第五届寰球 滑坡大会、第三和第四届巴东国际地质灾害学术论坛BIGS2021的大会登第14届国际工程地质大会与环境(IAEG)分会召集东谈主。
个东谈主主页
Google Scholar 主页、 Research Gate 主页、中国地大-国度站主页、 中国地大-昔时技艺学院 、地质灾害聪慧管控课题组 AI-Geohazards 微信公众号
斟酌标的与敬爱敬爱
主要从事地质灾害东谈主工智能大数据及聪慧风险管控,数值模拟和遥感与GIS在降雨-水库-地震-东谈主工诱发的地质灾害关系的展望预告斟酌责任。具体包括:
1)基于机器学习识别多源海量遥感影像数据(卫星,航片,雷达SAR, 无东谈主机UAV,激光雷达-LiDAR等)已毕快速建随即质灾害库;
2)基于多源地质灾害体的府上(地质,地形地貌,局势水文等)耦合东谈主工智能进行地质灾害风险评估;
3)基于灾害单体或小圭臬灾地域勾搭室内履行进行物理历程数值模拟,探明灾害诱发机理和机制;
4)基于大数据耦合物理历程数值模拟的智能地质灾害展望预告,构建地灾快速响济急预告阵势。
招生与培养
招生标的:地质资源与工程,3S技艺与地质灾害,AI大数据-策画机及地形地貌关系的专科。横蛮迎接具有深厚数学功底、策画机编程才智、力学以及关系专科布景的请求者。
在国外生涯学习责任近十年中,与国际上关系地质灾害斟酌课题组设立了邃密的相助关系,共同斟酌并发表科研论文。弥远招收具有邃密的数学策画机、数值模拟、3S技艺、水文地形地貌、地质灾害基础学问的劳苦勤学的硕士、博士斟酌生和博士后。咱们横蛮迎接具有科学斟酌责任温雅和抱负的请求者加入咱们的团队。
加入咱们,您将有契机成为国度田野不雅测斟酌站和教悔部985上风地质灾害平台的一员,并加入AI Geohazards-地质灾害智能管控团队,以地质资源与地质工程A+上风学科为骨干,通过有组织的科研集会科学问题,毒害地质灾害鸿沟,会通跨限制、跨平台、跨学科的交叉,来解码地质灾害追究,共同探索地质灾害智能减灾防灾的昔时,让咱们联袂勉力,为东谈主类的宜居地球而怡悦!
终年招生1-3个博士后,1-2博士生,2-4硕士!也迎接优秀本科生加入课题组积极参与科研行为,同期也积极迎接副老师或老师的加入,帮其推选请求校表里多样东谈主才筹画。
迎接参议邮箱:doujie@cug.edu.cn
团队
AI Geohazards-地质灾害聪慧管控团队,与日本东京大学、北海谈大学、日本国土交通部技術计谋抽象斟酌所和土木斟酌所、好意思国East Carolina University、University of South-Eastern Norway等单元保抓弥远的相助关系,面向国际科学前沿和国度要紧工程的科学问题,容身于三峡于库区,开展地质灾害智能减灾防灾的斟酌责任。
现在在读:博士二名硕士九名
两名博士后。
学生带领情况
1.2021.11:2020硕士生罗万褀、2021届王锐、何雨健、马豪别离得回第三届巴东国际地质灾害学术论坛,BIGS2021 Poster二等奖、三等奖及优秀奖,向子林并在国际大会BIGS2021作念理论讲演
2.2021.11: 2021届向子林博士目生别得回三峡中心、中国地质大学2021年科技论文讲演会一等奖和二等奖,2020硕士生罗万褀得回三等奖。
3.2022.10: 2022届博士生张乐乐、2021届王锐获国度站2022年科技论文讲演会二等奖;2021届向子林博士生、2021届硕士生汪恒别离获国度站2022年科技论文讲演会三等奖。
4.带领向子林博士以第一作家发表中科院TOP一区1篇文章,硕士生罗万褀以第一作家发表中科院二区1篇(高被引ESI1%),硕士生郭衍昊和何雨健别离以第一作家发表发表四区各一篇,2022届硕士董傲男以第一作家发表T2一篇。
5.2023.5:张乐乐与王锐别离得回中国地质大学第33届学生科技论文讲演会三等奖。
6.2023.9:2021届王锐,2022届董傲男、Hamza Daud得回国际会议BIGS2023学术海报三等奖。
7.2023.9:2021届向子林博士在14届国际环境工程大会IAEG作念理论学术讲演,2022届董傲男和邢珂别离作国际学术海报。
8.2023.11:2022届董傲男和邢珂别离得回2023年国度站科报会一等奖和三等奖,同期他们俩也获第34届科技讲演会一等奖和三等奖。获优秀带领名称。
毕业生:
硕士:
2023年: 1. 罗万褀 (西北大学转博);2.郭衍昊(湖北省-地调局水环中心)
教悔布景
2012-2015东京大学新限制创成科学斟酌科 博士学位
2006-2009中国科学院地球科学院 硕士学位
2002-2006 青岛农业大学资环学院 学士学位
责任经验
2021.12-于今,中国地质大学(武汉) 地质灾害国度田野科学不雅测斟酌站
探花视频2020-2021 中国地质大学(武汉) 教悔部长江三峡库区地质灾害斟酌中心
2019-2020 日本学术振兴会 斟酌员
2016-2019 日本国立斟酌斥地法东谈主 土木斟酌所 斟酌员
2015-2016 东京大学空间谍报中心 博士后
2011-2012 日本アカデミック エクスプレス株式会社 助理工程师
2010-2011 中国赴日本国留学生东北师范大学方案学校日语培训
2009-2010 广州奥格公司式样司理
社会兼职国产 gv
学术兼职
学会任职
日本滑坡学会会员、日本砂防学会会员、日土产货球行星科学連合会员和国际工程地质与环境协会(IAEG)会员、好意思国地球物理学会(AGU)会员、欧洲地球科学学会(EGU)会员、中国地震学会地震灾害链专科委员会委员,中国地质协会终生会员
国表里期刊编委
Frontiers in Earth Science (IF=3.34) 副主编
Geocarto International, Geomatics, Natural Hazards and Risk,Journal Mountain of Science, Journal of Geography and Geology 编委
地质科技通报、深地科学、地球科学 编委
Remote Sensing, NaturalHazards, Deep Underground Science and Engineering, Geoscience,Machine Learning and Knowledge Extraction, Frontiers in Earth Science, Sensors 专题主编
国际期刊审稿
Earth-Science Reviews, Geomorphology, Engineering Geology, Geoscience Frontiers, Science of The Total Environment, CATENA, Nature scientific report, Natural hazards, Remote sensing, Journal of Mountain Science, Theoretical and Applied Climatology, Bulletin of Engineering Geology and the Environment, Arabian Journal of Geosciences, Geocarto International, Journal of African Earth Sciences, Human and Ecological Risk Assessment, International Journal of Digital Earth, Geoscience, ISPRS International Journal of Geo-Information, The Egyptian Journal of Remote Sensing and Space Sciences, International Journal of Disaster Risk Science, Mathematical and Computational Applications, Engineering with Computers, The Professional Geographer, Advances in Space Research, Geosciences,Machine Learning and Knowledge Extraction等40多个SCI审稿东谈主。
主抓式样及中枢骨干
1. 动水运转型滑坡启滑机制与判据课题(第二负责东谈主)-子课题负责东谈主,国度当然科学基金要紧式样(2021-2025) (42090054)
2. Coupling ensemble machine learning with physical parameters framework for landslide evaluation四川大学水力学与山区河流斥地保护国度要点履行室基金资助式样(2021-2022)(SKHL2003)
3. 东谈主工智能地质灾害减灾防灾,中央高校高头绪东谈主才科研经费(2021-2026)
4. 基于深度学习的山区流域多源地质灾害链展望斟酌,四川大学水力学与山区河流斥地保护国度要点履行室基金资助式样(2020-2021)(SKHL1903)
5. Cognitive modeling for dynamic long-term landslide assessment associated with extreme events in emergency preparedness and disaster management,日本学术振兴会(2019-2020) (1074088)
6. 基于地质量形成分对地表坍塌的发生与评价斟酌日本国土交通部 (2015-2018)
7. 深层滑坡监测不雅测技艺斟酌,日本国土交通部萌芽 (2016-2018)
8. 基于地质灾害移动的挫伤展望监视技艺的斥地斟酌,日本国土交通部要点(2015-2019)
9. 广东省地质灾害数据拔擢 广东省科技厅(2006-2009)
10. 库岸滑坡地质灾害体智能识别技艺 中国电建集团华东勘探想象斟酌院(2022-2024)(KY2021-ZD-03)
11. 要紧滑坡地质灾害演化机理与展望预告 革命群体 (2022-2024)(No.2022CFA002)
12. 国度高头绪东谈主才筹画 (2022-2025)(20233040018)
13. 武汉英才优秀后生东谈主才式样 (2023-2024)( 20233050043)
14. 万古期序列下的多场耦合库岸滑坡智能监测预警 三峡库区地质灾害教悔部履行室要点绽开基金(2023-2024)(2023KDZ02)
15. 湖北省襄阳市2024年度地质灾害监测台站拔擢式样选点及想象 (2023-2024)
16. 云南2024年度1:1万地质灾害访问及数据库拔擢 (2023-2024)
比年主要论文 (*代表通信,#共吞并作)
1. Dou, Jie*, Yunus, A.P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, K., Yang, Y., Pham, B.T., 2020. Different sampling strategies for predicting landslide susceptibilities are deemed less consequential with deep learning. Science of the Total Environment https://doi.org/10.1016/j.scitotenv.2020.137320 (SCI=10.75 -ESI 1% 高被引)
2. Abdelaziz Merghadi1#, Ali P. Yunus2#, Dou Jie#*, Jim Whiteley, Binh Thai Pham. Machine learning methods for landslide susceptibility studies: a comparative overview of algorithm performance, Earth-Science Reviews, 207 (August): 103225. https://doi.org/10.1016/j.earscirev.2020.103225. (SCI=12.41 ESI 1% 高被引及热门论文)
3. Dou, Jie*, Yunus, A.P., Tien Bui, D., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Khosravi, K., Yang, Y., Pham, B.T., 2019. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan. Science of the Total Environment 662, 332–346. doi: 10.1016/j.scitotenv.2019.01.221 (SCI=10.75 -ESI 1% 高被引)
4. Dou Jie*, Yunus, A.P., Bui, D.T., Merghadi, A., Sahana, M., Zhu, Z., Chen, C.-W., Han, Z., Pham, B.T., 2019. Improved landslide assessment using support vector machine with bagging, boosting, and stacking ensemble machine learning framework in a mountainous watershed, Japan. Landslides. https://doi.org/10.1007/s10346-019-01286-5 (SCI=6.578-ESI 0.1% 高被引及 热门论文)
5. Dou, Jie*, et.al. Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM. Remote Sensing 2019, 11, doi:10.3390/rs11060638. (SCI=5.349 -ESI 1% 高被引)
6. Dou Jie*, Chang K-T*, Chen S, et al. 2015. Automatic Case-Based Reasoning Approach for Landslide Detection: Integration of Object-Oriented Image Analysis and a Genetic Algorithm. Remote Sensing 7:4318–4342. doi: 10.3390/rs70404318 (SCI=5.349)
7. Dou Jie*, Yunus, A.P., Xu, Y., Zhu, Z., Chen, C.-W., Sahana, M., Khosravi, K., Yang, Y., Pham, B.T., 2019. Torrential rainfall-triggered shallow landslide characteristics and susceptibility assessment using ensemble data-driven models in the Dongjiang Reservoir Watershed, China. Natural Hazards 97, 579–609. https://doi.org/10.1007/s11069-019-03659-4 (SCI=2.427)
8. Chang, K.-T., Merghadi, A., Yunus, A.P., Pham, B.T., Dou Jie*. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques. Nature Scientific report vol. 9, no. 1, 2019, p. 12296, doi:10.1038/s41598-019-48773-2. (SCI=4.996, 当然 科学报谈Selected as Top 100 rank,ESI 1% 高被引)
9. Dou, Jie*, Li, Xia, Yunus, Ali P., et al. (2015). An Integrated Artificial Neural Network Model for the Landslide Susceptibility Assessment of Osado Island, Japan. Natural Hazards, 1–28. doi:10.1007/s11069-015-1799-2. (SCI=3.158)
10. Dou Jie*, Tien Bui, Dieu, P. Yunus, Ali et al (2015). Optimization of Causative Factors for Landslide Susceptibility Evaluation using Remote Sensing and GIS data in parts of Niigata, Japan, Plos one, 10.1371/journal.pone.0133262 (SCI=3.53)
11. Dou Jie*, Li X, Yunnus Ali, et al. (2015). Automatic detection of sinkhole collapses at finer resolutions using a multi-component remote sensing approach, Natural hazards DOI: 10.1007/s11069-015-1756-0. (SCI=3.158)
12. Hai-bo Li#, Yue-ren Xu#, Jia-wen Zhou#, Xie-kang Wang#, Hiromitsu Yamagishi, Dou, Jie#*. Preliminary analyses of a catastrophic landslide occurred on July 23, 2020, in Guizhou Province, China. Landslides. https://doi.org/10.1007/s10346-019-01334-0 (SCI=6.578)
13. Han, Zheng, Bin Su, Yange Li, Dou Jie, Weidong Wang, and Lianheng Zhao. Modeling the Progressive Entrainment of Bed Sediment by Viscous Debris Flows Using the Three-Dimensional SC-HBP-SPH Method, Water Research, 182,116031. https://doi.org/10.1016/j.watres.2020.116031(SCI =9.130 )
14. Ali P.Yunus; Xuanmei Fan, Xiaolu Tang; Dou Jie, Qiang Xu, Runqiu Huang. Decadal vegetation succession from MODIS reveals the spatiotemporal evolution of post-seismic landsliding after the 2008 Wenchuan earthquake, Remote Sensing of Environment, 2020 (SCI=13.850)
15. Yunus AP, Dou, Jie*, Song X, Avtar R (2019) Improved Bathymetric Mapping of Coastal and Lake Environments Using Sentinel-2 and Landsat-8 Images. Sensors 19:2788. https://doi.org/10.3390/s19122788 (SCI=3.23)
16. Dou Jie, Paudel U, Oguchi T, et al (2015). Differentiation of shallow and deep-seated landslides using support vector machines: a case study of the Chuetsu area, Japan (SCI) Terrestrial, Atmospheric and Oceanic Sciences. doi: 10.3319/TAO.2014.12.02.07(EOSI) (SCI=1.1)
17. Dou Jie, Qian, J., Chen, S., & Zhen, X. (2010). Object-based and case-based reasoning method for ground collapses detection. Journal of Image and Graphics, 1 5(6), 900–910. (In Chinese)
18. LV, Y., Le, Q., Bui, H.-B., Bui, X., Nguyen, H., Nguyen-Thoi, T., Dou Jie*, Song, X., 2020. A Comparative Study of Different Machine Learning Algorithms in Predicting the Content of Ilmenite in Titanium Placer. Appl. Sci. 10, 635. (SCI=2.217)
19. Zhu, Z., Wang, H., Peng, D., Dou, Jie*, 2019. Modeling the hindered settling velocity of a falling particle in a particle-fluid mixture by the Tsallis entropy theory. Entropy (SCI=2.305)
20. Shariati, M., Mafipour, M.S., Mehrabi, P., Bahadori, A., Zandi, Y., Salih, M.N.A., Nguyen, H., Dou Jie*, Song, X., Poi-Ngian, S. Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete. Appl. Sci. 9, 5534. https://doi.org/10.3390/app9245534 (SCI=2.217)
21. Khosravi, K., Shahabi, H., Pham, B.T.*, Adamowski, J., Shirzadi, A., Pradhan, B., Dou, Jie*, Ly, H.-B., Gróf, G., Ho, H.L., Hong, H.*, Chapi, K., Prakash, I.A Comparative Assessment of Flood Susceptibility Modeling Using Multi-Criteria Decision-Making Analysis and Machine Learning Methods, 2019-Journal of Hydrology- (SCI=4.405 -ESI 1% 高被引)
22. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Bahadori, A., Zandi, Y.; Salih, M.N.A.; Nguyen, H*., Dou, Jie*; Song, X.; Poi-Ngian, S. Application of a Hybrid Artificial Neural Network-Particle Swarm Optimization (ANN-PSO) Model in Behavior Prediction of Channel Shear Connectors Embedded in Normal and High-Strength Concrete. Appl. Sci. 2019, 9, 5534. ( SCI=2.217)
23. Dou Jie*. et al (2018). A Comparative Study of the Binary Logistic Regression (BLR) and Artificial Neural Network (ANN) Models for GIS-Based Spatial Predicting Landslides at a Regional Scale. Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools: Volume 1: Fundamentals, Mapping and Monitoring (eds. Sassa, K. et al.) 139–151 (Springer International Publishing, 2018). doi:10.1007/978-3-319-57774-6_10
24. Zhu, Z. & Dou Jie* (2018). Current status of reclaimed water in China: An overview. Journal of Water Reuse and Desalination jwrd2018070. doi:10.2166/wrd.2018.070 (SCI=1.538)
25. Daniela Castro Camilo, Luigi Lombardoa, Martin Maib, Dou Jie, Raphaël Huser, 2017. Handling high predictor dimensionality in slope-unit-based landslide susceptibility models through LASSO-penalized Generalized Linear Model, 97:145-156. Environmental Modelling & Software. doi: 10.1016/j.envsoft.2017.08.003 (SCI=4.807)
26. 窦杰, et al.2010. 基于对象的遥感案例推理容貌检测岩溶大地塌陷. 中国图象图形学报 15.06(2010):900-909.
2023年
27. 窦杰, et al. 2023. 机器学习在滑坡智能防灾减灾中的行使与发展趋势. 地球科学
28. Luo, W., Dou Jie*, Fu, Y., Wang, X., He, Y., Ma, H., Wang, R., & Xing, K. (2022). A Novel Hybrid LMD – ETS – TCN Approach for Predicting Landslide Displacement Based on GPS Time Series Analysis. Remote Sensing, 15(1), 229. https://doi.org/10.3390/rs15010229 (SCI=5.349, 高被引 ESI1%)
29. Xiang Z, Dou Jie*, Yunus AP, et al (2023) Vegetation-landslide nexus and topographic changes post the 2004 Mw 6.6 Chuetsu earthquake. CATENA 223:106946. https://doi.org/10.1016/j.catena.2023.106946 (SCI=6.367 )
30. 郭衍昊 ,窦杰 *, et al. 2023. 机基于优化负样本采样策略的梯度进步决策树偶然丛林与偶然丛林梯度进步决策树模子的汶川同震滑坡易发性评价. 地质科技通报
31. 何雨健 ,窦杰 *, et al. 2023. 国表里免像控无东谈主机航测软件在数字滑坡中的行使效果对比-以三峡库区黄土坡滑坡为例. 中国地质灾害与防治学报
32. Ni W, Zhao L, Zhang L, Dou Jie* (2023) Coupling Progressive Deep Learning with the AdaBoost Framework for Landslide Displacement Rate Prediction in the Baihetan Dam Reservoir, China. Remote Sens 15:2296. https://doi.org/10.3390/rs15092296(SCI=5.349)
33. Dong A, Dou Jie* , Fu Y, et al (2023) Unraveling the Evolution of Landslide Susceptibility: A Systematic Review of 30-Years of Strategic Themes and Trends. Geocarto Int 38:1–64. https://doi.org/10.1080/10106049.2023.2256308
国际会议理论讲演
1. Estimating scale effects of multiple DEMs for landslide geohazard map using GIS-based artificial intelligence models, AGU, 2019, SanFrancisco, USA
2. GeohazardstriggeredbydeadlyHokkaidoIburi-TobuEarthquake(September 6, 2018, Mw6.7), Hokkaido, Japan,12thARCof IAEG,2019, Jeju, SouthKorean
3. EstimationofDistributionofTephraFallDepositUsingtheInterpolationMethodBased on Multi-observation Data, Interpraevent,2018,Toyama,Japan
4.High predictor dimensionality in slope-unit-based landslide susceptibility models throughLASSO-penalized Generalized Linear Model,2017,EGU General Assembly, Vienna, Austria
5.Ellipse-approximated isopach(EAI) approach forassessing ashfall deposit at the active Sakurajima volcano, Japan,2016,Cities onVolcanoes9,Puerto Varas,Chile
6. Spatial resolution effects of digital terrain models on landslide susceptibility analysis,2016,Prague, CzechRepublic
7. Analysis of the landslides in Hiroshima caused by the typhoon based on bivariate statistical landslide susceptibility,2015, JpGU, Makuhahri, Japan
8. Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan, 2014, ICEO&SI, Taiwan, Taiwan
9. GIS-Based Landslide Susceptibility Mapping Using a Certainty Factor Model and Its Validation in the Chuetsu Area, Central Japan, 2014, The Third World Landslide Forum, Beijing, China
10. Back propagation (BP) model optimized by genetic algorithms (GA) for predicting landslides, IGU 2013 - Kyoto regional conference, Japan
11. Using Back-Propagation networks to predict the landslides based on 2m Lidar DEM, 2013, JpGU, Makuahri, Japan
12. Application of Support Vector Machines to predict landslides based on Lidar DEM: the Chuetsu earthquake case study, Japan, 2013, ICEO&SI, Taiwan.
软件著述权
1.三峡库区地质灾害及时监测系统软件[简称:地灾监测系统] V1.0, 2021.9.25
2.基于和声证实-撑抓向量牵记的滑坡时间序诸位移智能展望软件 V1.0,2023.5.9 窦杰,王锐,梁文欣
3.基于轻量级编解码语义分割网罗的滑坡智能识别软件V1.0,2023. 窦杰, 赵留园 ,李长冬, 董傲男, 王锐, 张乐乐, 邢珂
4.基于扫视力机制的SE-VGG16的同震滑坡易发性评价软件V1.0,2023. 窦杰,李长冬, 董傲男, 王锐, 邢珂,杨玉川
5.基于优化负样本采样策略的Resnet深度学习模子滑坡易发性评价软件V1.0,2023. 窦杰, 董傲男,王锐,张乐乐,邢珂
6.基于吵嘴时悲伤神经网罗的滑坡万古序监测数据智能展望软件V1.0,2023. 王锐,窦杰,梁文欣,董傲男,周凡皓
7.会通悲伤神经网罗与遗传算法优化SVR模子的库岸滑坡时间序诸位移智能展望软件V1.0,2023. 梁文欣,王锐,窦杰,周凡皓
8.多智能体耦合深度学习的滑坡时间序诸位移组合展望软件,2023. 王锐,窦杰,梁文欣,向子林,周凡皓
9.基于数据偶然增强的ResUNet深度学习模子滑坡瑕玷识别软件,2023. 窦杰,李长冬,赵留园 ,董傲男,张乐乐
10.基于多统计参数的二维节理芜俚度扫数非线性展望软件,2023. 梁文欣,窦杰,董傲男
11.基于树结构的东谈主工智能滑坡易发性评价软件V1.0,2024. 窦杰,龚松林,马豪,董傲男,张乐乐
发明专利
1.基于AdaBoost框架的深度学习滑坡位移展望容貌, 2023 请求. 窦杰, 梁文欣, 董傲男, 王锐, 罗万祺
2.一种基于圭臬无味变换法的边坡可靠性分析技艺, 2023 请求. 窦杰, 向子林
2.基于GBDT的二维节理芜俚度扫数非线性笃信容貌, 2024 请求. 窦杰 梁文欣 汤红
得回荣誉
1. 国度高头绪东谈主才、2021年入选湖北省高头绪东谈主才筹画、2020年中国地质大学百东谈主筹画、武汉市英才筹画 (2022)、第18届留日中国东谈主 优秀斟酌.革命恶果奖赏奖 (2022)、入选群众前2%顶尖科学家榜单(2022、2023)、高被引学者(2023)
2. 2018年获日本学术振兴会(JSPS)颠倒斟酌基金
3. 2021年获得回日本第17届地震工程大会- "Early Career Award"
4. 2011年获日本政府(文部科学省-MEXT)博士生奖学金
5. 2014年东京大学新限制创成科学斟酌科科学斟酌基金
6. 2019年,论文“Shallow and Deep-Seated Landslide Differentiation Using Support Vector Machines: A Case Study of the Chuetsu Area, Japan” published in TAO Journal has won the Most Cited Article Award in 2019。入选SCI杂志TAO最多援用奖
7. 2020年,论文“Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques”。入选百篇当然科学讲演-Top 100 Nature Scientific Reports paper
8. 2008年中科院学术讲演一等奖